If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x^2+40x-200=0
a = 20; b = 40; c = -200;
Δ = b2-4ac
Δ = 402-4·20·(-200)
Δ = 17600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{17600}=\sqrt{1600*11}=\sqrt{1600}*\sqrt{11}=40\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-40\sqrt{11}}{2*20}=\frac{-40-40\sqrt{11}}{40} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+40\sqrt{11}}{2*20}=\frac{-40+40\sqrt{11}}{40} $
| -5n=-54 | | 4z^2+9=-4z | | 10k^2+6k-1=0 | | 7x-5=4(x-3) | | q3+ 12=14 | | 11x+3=-102 | | 48=45−6/y | | (c-12=-4)c= | | (8x+17)=115 | | 15x−4=7x+28 | | 15x−4=7x+28, | | 8/a+2=18 | | 6.38=–6.98+4p | | x-6.69=8.3 | | 3÷x=4-2x | | v-4.4=9.5 | | a÷3=4-2a | | u-3.7=9.75 | | x÷3=4-2x | | y-8.45=7.6 | | (2x+3)²=9 | | -u+281=194 | | 3e/5=-11 | | n²-n-1000=0 | | 222=-x+106 | | 217=117-y | | 8t=t=70 | | 3+3(x+10)=2 | | 5g-8-g=44 | | 3(t-4+6=3(2t-5) | | -9x-(-3x-2)=-(x+3) | | 6(3-x)+2(5x+4)=-2 |